Bryon Aragam

Curriculum vitae

bryon@chicagobooth.eduwww.bryonaragam.com

Current position

2019– Assistant Professor, Econometrics and Statistics, Booth School of Business, University of Chicago Robert H. Topel Faculty Scholar

Research Interests

- O Statistical machine learning and nonparametric statistics
- o Latent variable models, generative models, and unsupervised learning
- O Causality, graphical models, and deep learning
- o Interpretability, fairness, and personalization

Academic Background

2016–2019 **Postdoctoral researcher**, *Machine Learning Department*, Carnegie Mellon University

UseR!2017 Young Academics Scholarship

- 2010–2015 **Doctor of Philosophy**, *Statistics*, University of California, Los Angeles (UCLA) Most Promising Theoretical Statistician NSF Graduate Research Fellowship UCLA Dissertation Year Fellowship Teaching Assistant Coordinator
- 2009–2010 Master of Arts, Applied Mathematics, University of California, Los Angeles (UCLA)
- 2004–2008 Bachelor of Science with Honours, *Mathematics*, University of Tennessee, Knoxville

John H. Barrett Prize for outstanding undergraduate mathematics major Chancellor's Honors Program Undergraduate Research Grant First Place, Allen Medal Mathematics Competition

Publications

*alphabetical author order

Journals: Stat/ML theory and methodology

- AOS Uniform consistency in nonparametric mixture models
 *B Aragam and R Yang Annals of Statistics, Volume 51, Number 1 (2023), 362–390, arXiv:2108.14003
- JMLR Fundamental limits and tradeoffs in invariant representation learning
 H Zhao, C Dan, B Aragam, T Jaakkola, G Gordon, and P Ravikumar
 Journal of Machine Learning Research, 23(340):1-49, 2022, arXiv:2012.10713

- AOS Identifiability of nonparametric mixture models and Bayes optimal clustering
 B Aragam, C Dan, EP Xing, and P Ravikumar
 Annals of Statistics, Volume 48, Number 4 (2020), 2277–2302, arXiv:1802.04397
- JSS Learning large-scale Bayesian networks with the sparsebn package **B Aragam**, J Gu, and Q Zhou *Journal of Statistical Software*, 91(11), 1–38, arXiv:1703.04025
- JMLR Concave penalized estimation of sparse Gaussian Bayesian networks B Aragam and Q Zhou Journal of Machine Learning Research, 16:2273–2328, arXiv:1401.0852

Peer-reviewed ML conferences

CS/ML conferences are peer reviewed (double-blind) with low acceptance rates (20-30%) and are considered more prestigious than CS/ML journals. Spotlight and oral designations indicate the top few percent of papers. This list does not include workshop papers.

- NeurIPS Learning nonparametric latent causal graphs with unknown interventions Y Jiang and **B Aragam** Advances in Neural Information Processing Systems, arXiv:2306.02899
- NeurIPS Global optimality in bivariate gradient-based DAG learning C Deng, K Bello, **B Aragam** and P Ravikumar Advances in Neural Information Processing Systems, arXiv:2306.17378
- NeurIPS iSCAN: Identifying causal mechanism shifts among nonlinear additive noise models T Chen, K Bello, B Aragam, and P Ravikumar Advances in Neural Information Processing Systems, arXiv:2306.17361
- NeurIPS Uncovering meanings of embeddings via partial orthogonality Y Jiang, **B Aragam**, and V Veitch Advances in Neural Information Processing Systems, arXiv:2310.17611
- NeurIPS Assumption violations in causal discovery and the robustness of score matching F Montagna, AA Mastakouri, E Eulig, N Noceti, L Rosasco, D Janzing, B Aragam, and F Locatello Advances in Neural Information Processing Systems, arXiv:2310.13387
- NeurIPS Learning linear causal representations from interventions under general nonlinear (oral) mixing

S Buchholz, G Rajendran, E Rosenfeld, **B Aragam**, B Schölkopf, and P Ravikumar Advances in Neural Information Processing Systems, arXiv:2306.02235

- COLT Tight bounds on the hardness of learning simple nonparametric mixtures *B Aragam and WM Tai *Conference on Learning Theory*, arXiv:2203.15150
- ICML Learning mixtures of gaussians with censored data *B Aragam and WM Tai International Conference on Machine Learning, arXiv:2305.04127
- ICML Optimizing NOTEARS objectives via topological swaps C Deng, K Bello, **B Aragam** and P Ravikumar International Conference on Machine Learning, arXiv:2305.17277

	Identifiability of deep generative models without auxiliary information G Rajendran, B Kivva, P Ravikumar, and B Aragam <i>Advances in Neural Information Processing Systems</i> , arXiv:2206.10044	
NeurIPS	DAGMA: Learning DAGs via M-matrices and a log-determinant acyclicity characterization K Bello, B Aragam , and P Ravikumar <i>Advances in Neural Information Processing Systems</i> , arXiv:2209.08037	
AISTATS	Optimal estimation of Gaussian DAG models M Gao, WM Tai, and B Aragam <i>International Conference on Artificial Intelligence and Statistics</i> , arXiv:2201.10548	
AISTATS	On perfectness in Gaussian graphical models AA Amini, B Aragam , and Q Zhou <i>International Conference on Artificial Intelligence and Statistics</i> , arXiv:1909.01978	
NeurIPS	Learning latent causal graphs via mixture oracles G Rajendran, B Kivva, P Ravikumar, and B Aragam <i>Advances in Neural Information Processing Systems</i> , arXiv:2106.15563	
NeurIPS	Structure learning in polynomial time: Greedy algorithms, Bregman information, and exponential families G Rajendran, B Kivva, M Gao, and B Aragam Advances in Neural Information Processing Systems, arXiv:2110.04719	
NeurIPS	Efficient Bayesian network structure learning via local Markov boundary search M Gao and B Aragam <i>Advances in Neural Information Processing Systems</i> , arXiv:2110.06082	
NeurIPS	A polynomial-time algorithm for learning nonparametric causal graphs M Gao, Y Ding, and B Aragam Advances in Neural Information Processing Systems, arXiv:2006.11970	
UAI	Automated dependency plots D Inouye, L Liu, J Kim, B Aragam , and P Ravikumar <i>Uncertainty in Artificial Intelligence</i> , arXiv:1912.01108	
AISTATS	DYNOTEARS: Structure learning from time-series data R Pamfil, N Sriwattanaworachai, P Pilgerstorfer, S Desai, K Georgatzis, P Beaumont, and B Aragam International Conference on Artificial Intelligence and Statistics, arXiv:2002.00498	
AISTATS	Learning sparse nonparametric DAGs X Zheng, C Dan, B Aragam , P Ravikumar, and EP Xing <i>International Conference on Artificial Intelligence and Statistics</i> , arXiv:1909.13189	
NeurIPS	Globally optimal score-based learning of directed acyclic graphs in high-dimensions B Aragam , AA Amini, and Q Zhou <i>Advances in Neural Information Processing Systems</i>	
NeurIPS	Learning sample-specific models with low-rank personalized regression B Lengerich, B Aragam , and EP Xing <i>Advances in Neural Information Processing Systems</i> , arXiv:1910.06939	
	3/6	

ICML Fault tolerance in iterative-convergent machine learning A Qiao, **B Aragam**, B Zhang, and EP Xing *36th International Conference on Machine Learning*, arXiv:1810.07354

 NeurIPS DAGs with NO TEARS: Continuous optimization for structure learning
 (spotlight) X Zheng, B Aragam, P Ravikumar, and EP Xing Advances in Neural Information Processing Systems, arXiv:1803.01422

 NeurIPS The sample complexity of semi-supervised learning with nonparametric mixture models
 C Dan, L Liu, B Aragam, P Ravikumar, and EP Xing Advances in Neural Information Processing Systems, arXiv:1809.03073

Journals: Biomedical applications

JCB Tradeoffs of Linear Mixed Models in Genome-wide Association Studies H Wang, B Aragam, and EP Xing Journal of Computational Biology, 29 (3), 233-242, 2022

Bioinformatics Personalized regression enables sample-specific pan-cancer analysis B Lengerich, **B Aragam**, and EP Xing *Bioinformatics*, Volume 34, Issue 13, 1 July 2018, Pages i178–i186 Also appears in the *26th Conference on Intelligent Systems for Molecular Biology* (ISMB)

- Bioinformatics Precision Lasso: Accounting for correlations and linear dependencies in highdimensional genomic data H Wang, B Lengerich, **B Aragam**, and EP Xing *Bioinformatics*, Volume 35, Issue 7, 01 April 2019, Pages 1181–1187
 - Methods Variable selection in heterogeneous datasets: A truncated-rank sparse linear mixed model with applications to genome-wide association studies H Wang, **B Aragam**, and EP Xing *Methods*, Volume 145, 2–9

Preprints and working papers

For an updated list of preprints, please see my website.

A non-graphical representation of conditional independence via the neighbourhood lattice *AA Amini, **B Aragam**, and Q Zhou

*AA Amini, **B Aragam**, and Q Zhou arXiv:2206.05829

Optimal neighbourhood selection in structural equation models M Gao, WM Tai, and **B Aragam** arXiv:2306.02244

Neuro-causal factor analysis A Markham, M Liu, **B Aragam**, and L Solus arXiv:2305.19802

Software

2022	DAGMA algorithm (GitHub link) Faster and more accurate continuous constrained optimization for structure learning based on a new acyclicity characterization via the log-det function.
2021	TAM algorithm (GitHub link) Efficient nonparametric DAG learning based on entropic conditions.
2020	Automated dependence plots (GitHub link) Python library for auditing, checking, and explaining black-box machine learning models by automating the selection of interesting dependence plots
2018–	NOTEARS algorithm (GitHub link) Continuous optimization for Bayesian network structure learning via black-box solvers
2018	Personalized regression (GitHub link) Python code for learning sample-specific, personalized regression models
2018	Precision Lasso (GitHub link) A variant of the Lasso designed to adapt to and account for correlations and dependencies in high-dimensional data
2016–	sparsebn package for R (CRAN link, Github link) Comprehensive package for learning large-scale Bayesian networks based on sparse regular- ization
2015	ccdr package for R (Github link) Software for learning Gaussian BNs with thousands of variables
	Presentations and Talks
2024 (upcoming)	ACIC, JSM, ISBA

- 2023 Institute for Statistical Mathematics (Tokyo), Shiga, Caltech, Columbia, Cornell, MPI-Tübingen, Simons Institute, Workshop on Algebraic Economics (IMSI), Workshop on Bayesian Statistics and Statistical Learning (IMSI), MMLS, EcoSta
- 2022 Balyasny Asset Management, Simons Institute
- 2021 University of Illinois-Chicago, KTH
- 2020 Wisconsin, UChicago, TTIC, Causal Data Science
- 2019 UBC, SFU, UChicago, UToronto, UCL Gatsby, Texas A&M, Chicago Booth, Wisconsin, Michigan, Purdue, ICSA
- 2018 UIUC, UCLA, OSU, CMU, Hulu, IBM

Grants

Also awarded the NSF GRFP fellowship and a dissertation fellowship as a graduate student.

2020–2023 NSF RI MEDIUM IIS-1956330, A Rigorous, General Framework for Tractable Learning of Large-Scale DAGs from Data Principal Investigator 2020–2024 NIH NIGMS R01GM140467, Sample-specific Models for Molecular Portraits of Diseases in Precision Medicine Co-Investigator

Service

Conference organizing committees

2024	UAI	Sponsorship chair
2023	UAI	Discussion chair
	Editorial	
2023-	TMLR	Action editor
2022-	ICML	Area chair
2021-	ICLR	Area chair
2020-	NeurIPS	Area chair
	University service	
2023	Rising Stars Conference (Booth)	Moderator
2023	Data Science Institute Summer Lab (UChicago)	Mentor and panelist
2022-	Committee on Quantitative Methods (UChicago)	Faculty member
2021	Center for Data and Computing Summer Lab (UChicago)	Mentor and panelist
2021	Center for Data and Computing Rising Stars Program (UChica	ngo) Mentor and panelist

Journal and conference reviewing

AOS, JASA, Biometrika, AOAS, IEEE Information Theory, JMLR, JAIR, JMVA, SIMODS, TPAMI, TNNLS, TNSE, JSS, SIAP, JCGS, Bioinformatics, PLoS Computational Biology, PLoS ONE, NeurIPS, ICML, AISTATS

Grant review

2021	NSF Robust Intelligence (RI)	Panelist and reviewer
2017	Machine Learning for Social Good (CMU)	Panelist and reviewer
	Miscellaneous	
2021	AISTATS 2022 Submission Mentorship Program	Mentor
2021	LatinX in AI Mentoring Program	Mentor

Teaching

Instructor

- 2020- Business Statistics, BUSN 41000, Booth School of Business
- 2017 Data Analysis Project Preparation, Machine Learning 10-821, CMU
- 2015-16 Introduction to Statistical Reasoning, Statistics 10, UCLA
 - 2015 Teaching College Statistics, Statistics 495A, UCLA